Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ying Zhang, Tian-Yang Feng* and Shu-Yi Li

School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: tyfeng@tju.edu.cn

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.003 \text{ Å}$ R factor = 0.036 wR factor = 0.098 Data-to-parameter ratio = 13.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

N-tert-Butyl-4-chloro-5-methyl-2-nitroaniline

The title compound, $C_{11}H_{15}ClN_2O_2$, lies on a crystallographic mirror plane of symmetry; thus all of its atoms, except for two of the *tert*-butyl methyl C atoms and the H atoms, are exactly coplanar. There is an intramolecular hydrogen bond between the amide N atom and a nitro O atom. There are no exceptionally close intermolecular contacts, but the planar portions of the molecules stack with their planes only 3.39 Å apart.

Received 5 November 2004 Accepted 23 November 2004 Online 30 November 2004

Comment

The title compound, (I) (Fig. 1), is one of the key intermediates in the preparation of quinoxalinediones, which are potential *N*-methyl-D-aspartate (NMDA) antagonists and can be used to reduce damage to the nervous system during cerebral stroke and brain injury (Ilyin *et al.*, 1996; Cai *et al.*, 1997). The molecules are exactly planar, excluding C9, C9A and the H atoms, and lie on crystallographic mirror planes of symmetry that occur at $y = \frac{1}{4}$ and $y = \frac{3}{4}$ in the unit cell. The bond lengths and angles are unexceptional.

The structure is stabilized by one intramolecular hydrogen bond, between the amide N atom and a nitro O atom (Table 1), with $N \cdots O = 2.628$ (3) Å and $N - H \cdots O = 133^{\circ}$. It is similar to a corresponding hydrogen bond in 2-chloro-*N*-(5-chloro-4fluoro-2-nitrophenyl)acetamide [$N \cdots O = 2.611$ (9) Å and N - $H \cdots O = 135$ (2)°; Zhang & Feng, 2004]. No intermolecular hydrogen bonds are found in the crystal structure of (I), but there are several $C \cdots C$ and $C \cdots N$ contacts in the 3.4–3.6 Å range, all of which are between stacked parallel planar parts of the molecules (see Fig. 2).

Experimental

The title compound was prepared from 2-chloro-4-fluoro-1-methylbenzene, through nitration and substitution, according to the method described by Kher *et al.* (1995). Single crystals suitable for X-ray analysis were grown by slow evaporation of an ethanol solution at 298 K.

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Figure 2

Stacking of the molecules in the crystal structure of (I), viewed down the b axis of the unit cell.

Crystal data

 $D_x = 1.362 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 579 reflections $\theta = 3.7-25.0^{\circ}$ $\mu = 0.31 \text{ mm}^{-1}$ T = 293 (2) K Prism, yellow $0.22 \times 0.16 \times 0.12 \text{ mm}$

Data collection

Bruker SMART 1000 CCD area-	1314 independent reflections
detector diffractometer	921 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.026$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.4^{\circ}$
(SADABS; Bruker, 1997)	$h = -11 \rightarrow 11$
$T_{\min} = 0.925, T_{\max} = 0.963$	$k = -8 \rightarrow 8$
3456 measured reflections	$l = -9 \rightarrow 11$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0449P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.036$	+ 0.1063P]
$wR(F^2) = 0.099$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
1314 reflections	$\Delta \rho_{\rm max} = 0.21 \ {\rm e} \ {\rm \AA}^{-3}$
95 parameters	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1 \cdots O1$	0.87	1.96	2.628 (3)	133

Atom H1, attached to N1, was located initially in a difference Fourier map, and was then constrained to the N atom with an N–H distance of 0.87 Å. All other H atoms were positioned geometrically and refined in the riding-model approximation. C–H distances were set at 0.93 Å for C2 and C5, and at 0.96 Å for the methyl groups (C7, C9, C9A and C11); $U_{\rm iso}({\rm H})$ values were constrained to be $1.5U_{\rm eq}({\rm carrier})$ for methyl H atoms and $1.2U_{\rm eq}({\rm carrier})$ for other H atoms.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

X-ray data were collected at the X-ray Crystallographic Service, University of Nankai, China. The authors thank the staff for all their help and advice.

References

- Bruker (1997). SADABS, SMART, SAINT and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Cai, S. X., Kher, S. M., Zhou, Z. L, Ilyin, V., Espitia, S. A., Tran, M., Hawkinson, J. E., Woodward, R. M., Weber, E. & Keana, J. F. W. (1997). J. Med. Chem. 40, 730–738.
- Ilyin, V. I., Whittemore, E. R., Tran, M., Shen, K. Zh. Cai, S. X., Kher, S. M., Keana, J. F. W., Weber, E. & Woodward, R. M.(1996). *Eur. J. Pharmacol.* 310, 107–114.
- Kher, S. M., Cai, S. X., Weber, E. & Keana, J. F. W. (1995). J. Org. Chem. 60, 5838–5842.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Zhang, Y. & Feng, T. Y. (2004). Acta Cryst. E60, o1717-o1718.